PELATIHAN BUDIDAYA SAYURAN MICROGREEN HIDROPONIK WICK SYSTEM DI SD N 2 KEDUNGRANDU KECAMATAN PATIKRAJA KABUPATEN BANYUMAS
DOI:
https://doi.org/10.31970/abditani.v6i2.222Abstract
Desa Kedungrandu merupakan sebuah Desa yang berada di wilayah Kecamatan Patikraja, Kabupaten Banyumas. Microgreens hidroponik wick system merupakan teknik budidaya tanaman dengan menumbuhkan benih tanaman sayuran berumur pendek menggunakan wick system. Upaya meningkatkan pengetahuan melalui edukasi pelatihan khususnya pada tanaman sayuran bayam. Kegiatan pengabdian masyarakat bertujuan untuk meningkatkam ketrampilan dan mengedukasi siswa/siswi sekolah dasar tentang pertumbuhan dan perkembangan tanaman melalui pelatihan budidaya sayuran secara microgreens hidroponik system wick. Kegiatan ini di mulai dengan kegiatan (survei lokasi, permohonan ijin, pengurusan administrasi, persiapan alat dan bahan serta akomodasi) di SD N 2 Kedungrandu Kabupaten Banyumas pada tanggal 29 Agustus 2022 hingga pelaksanaan pelatihan (budidaya microgreens secara hidroponik wick system, sesi diskusi dan tanya jawab saat materi kepada siswa yang telah mempraktikan dan menumbuhkembangkan tanaman microgreens hidroponik wick system karena turut serta berpartisipasi aktif membangun ilmu pengetahuan dan edukasi untuk membangun karakter siswa yang telah disampaikan saat pelatihan) pada 13 September 2022. Pendampingan dan monitoring dilakukan 23 September 2022 dimana para siswa turut berpartisipasi aktif dalam sesi tanya jawab setelah tanaman tumbuh dan dapat dipanen dengan baik. Kegiatan pelatihan berjalan lancar dan terlaksana dengan baik. Para peserta berperan akif dan antusias dan diharapkan tetap menjalin kerjasama serta mengadakan pelatihan untuk budidaya hidroponik dengan metode lainnya guna menambah ilmu pengetahuan dalam bidang sains dan pemanfaatan lahan sempit sebagai projek penguatan karakter profil pelajar pancasila
References
(2005). Potential replacements for rockwool as growing substrate for greenhouse tomato. Canadian Journal of Soil Science, 85(1), 67–74. https://doi.org/10.4141/S04-026
Anggraini, W., Zulfa, M., Prihantini, N. N., Batubara, F., & Indriyani, R. (2020). Utilization of Tofu Wastewater for the Growth of Red Spinach (Alternanteraamoenavoss) in Floating Raft Hydroponic Cultures. Journal of Physics: Conference Series, 1467(1). https://doi.org/10.1088/1742-6596/1467/1/012005
Benke, K., & Tomkins, B. (2017). Future food-production systems: Vertical farming and controlled-environment agriculture. Sustainability: Science, Practice, and Policy, 13(1), 13–26. https://doi.org/10.1080/15487733.2017.1394054
Bergquist, S. Å. M., Gertsson, U. E., & Olsson, M. E. (2006). Influence of growth stage and postharvest storage on ascorbic acid and carotenoid content and visual quality of baby spinach (Spinacia oleracea L.). Journal of the Science of Food and Agriculture, 86(3), 346–355. https://doi.org/10.1002/jsfa.2373
Dalastra, C., Filho, M. C. M. T., & Vargas, P. F. (2020). Periodicity of exposure of hydroponic lettuce plants to nutrient solution. Revista Caatinga, 33(1), 81–89. https://doi.org/10.1590/1983-21252020v33n109rc
Dannehl, D., Suhl, J., Ulrichs, C., & Schmidt, U. (2015). Evaluation of substitutes for rock wool as growing substrate for hydroponic tomato production. Journal of Applied Botany and Food Quality, 88, 68–77. https://doi.org/10.5073/JABFQ.2015.088.010
Di Gioia, F., De Bellis, P., Mininni, C., Santamaria, P., & Serio, F. (2017). Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. Journal of the Science of Food and Agriculture, 97(4), 1212–1219. https://doi.org/10.1002/jsfa.7852
Direktorat Jenderal Pendidikan Anak Usia Dini, P. D. dan P. M. (2021). Data Pokok Pendidikan.
Gemnafle, M., & Batlolona, J. R. (2021). Manajemen Pembelajaran. Jurnal Pendidikan Profesi Guru Indonesia (Jppgi), 1(1), 28–42. https://doi.org/10.30598/jppgivol1issue1page28-42
Gioia, F. Di, Petropoulos, S. A., Ozores-Hampton, M., Morgan, K., & Rosskopf, E. N. (2019). Zinc and Iron Agronomic Biofortification of Brassicaceae Microgreens. 9(677), 1–20. https://doi.org/doi:10.3390/agronomy9110677
Grusak, M. A. (2002). Enhancing mineral content in plant food products. Journal of the American College of Nutrition, 21(November), 178S-183S. https://doi.org/10.1080/07315724.2002.10719263
Harahap, M. A., Harahap, F., & Gultom, T. (2020). The effect of ab mix nutrient on growth and yield of pak choi (brassica chinensis l.) plants under hydroponic wick system condition. Journal of Physics: Conference Series, 1485(1). https://doi.org/10.1088/1742-6596/1485/1/012028
Kaur, H., Bedi, S., Sethi, V. P., & Dhatt, A. S. (2018). Effects of substrate hydroponic systems and different N and K ratios on yield and quality of tomato fruit. Journal of Plant Nutrition, 41(12), 1547–1554. https://doi.org/10.1080/01904167.2018.1459689
Kemendikbud. (2022a). DITPKLK _ Kurikulum Merdeka Menjadi Jawaban untuk Mengatasi Krisis Pembelajaran _ 2020.
Kemendikbud. (2022b). Projek Penguatan. In PANDUAN PENGEMBANGAN Projek Penguatan Profil Pelajar Pancasila (p. 137).
Kim, H. M., Lee, H. R., Kim, Y. J., Kim, H. M., Lee, J. H., Park, S. H., Jeong, B. R., & Hwang, S. J. (2019). Selection of newly developed artificial medium for lettuce production in a closed-type plant production system. Horticultural Science and Technology, 37(6), 708–718. https://doi.org/10.7235/HORT.20190071
Kovácsné Madar, Á., Rubóczki, T., & Takácsné Hájos, M. (2019). Lettuce production in aquaponic and hydroponic systems. Acta Universitatis Sapientiae, Agriculture and Environment, 11(1), 51–59. https://doi.org/10.2478/ausae-2019-0005
Kyriacou, M. C., El-Nakhel, C., Pannico, A., Graziani, G., Soteriou, G. A., Giordano, M., Palladino, M., Ritieni, A., De Pascale, S., & Rouphael, Y. (2020). Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. In Antioxidants (Vol. 9, Issue 3). https://doi.org/10.3390/antiox9030252
Laksono, R. A., & Sugiono, D. (2017). Karakteristik Agronomis Tanaman Kailan (Brassica oleraceae L. var. acephala DC.) Kultivar Full White 921 Akibat Jenis Media Tanam Organik dan Nilai EC (Electrical Conductivity) pada Hidroponik Sistem Wick. Jurnal Agrotek Indonesia, 2(1), 25–33. https://doi.org/10.33661/jai.v2i1.715
Lal, R. (2009). Soil degradation as a reason for inadequate human nutrition. Food Security, 1(1), 45–57. https://doi.org/10.1007/s12571-009-0009-z
Lee, S., & Lee, J. (2015). Beneficial bacteria and fungi in hydroponic systems: Types and characteristics of hydroponic food production methods. Scientia Horticulturae, 195, 206–215. https://doi.org/10.1016/j.scienta.2015.09.011
Lenzi, A., Orlandini, A., Bulgari, R., Ferrante, A., & Bruschi, P. (2019). Antioxidant and mineral composition of three wild leafy species: A comparison between microgreens and baby greens. Foods, 8(10). https://doi.org/10.3390/foods8100487
Lubaba, M. N., & Alfiansyah, I. (2022). Edusaintek: Jurnal Pendidikan, Sains dan Teknologi. 9(3), 687–706.
Maure, G. H., Padafani, B. D., Malaikosa, E. J., Achmad, Z. N., M, I., Djaha, & Abel, P. (2020). RUMAH. 4(2), 87–90.
Mir, S. A., Shah, M. A., & Mir, M. M. (2017). Microgreens: Production, shelf life, and bioactive components. Critical Reviews in Food Science and Nutrition, 57(12), 2730–2736. https://doi.org/10.1080/10408398.2016.1144557
Muthayya, S., Rah, J. H., Sugimoto, J. D., Roos, F. F., Kraemer, K., & Black, R. E. (2013). Enhanced Reader.pdf. In Nature (Vol. 8, pp. 1–12). https://doi.org/10.1371/journal.pone.0067860
Nadhira, S., Ramar, A., Jegadeeswari, V., Srinivasan, S., & Sivasakthi, S. (2021). Microgreen production in herbal spices. ~ 168 ~ Journal of Pharmacognosy and Phytochemistry, 10(1), 168–170. www.phytojournal.com
Nolan, D. A. (2018). Effects of seed density and other factors on the yield of microgreens grown hydroponically on Burlap. Virginia Tech, 1–44.
Pinto, E., Almeida, A. A., Aguiar, A. A., & Ferreira, I. M. P. L. V. O. (2015). Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. Journal of Food Composition and Analysis, 37(3), 38–43. https://doi.org/10.1016/j.jfca.2014.06.018
Przybysz, A., Wrochna, M., Ma?ecka-Przybysz, M., Gawro?ska, H., & Gawro?ski, S. W. (2016). Vegetable sprouts enriched with iron: Effects on yield, ROS generation and antioxidative system. Scientia Horticulturae, 203, 110–117. https://doi.org/10.1016/j.scienta.2016.03.017
Puccinelli, M., Malorgio, F., Rosellini, I., & Pezzarossa, B. (2019). Production of selenium-biofortified microgreens from selenium-enriched seeds of basil. Journal of the Science of Food and Agriculture, 99(12), 5601–5605. https://doi.org/10.1002/jsfa.9826
Resh, H. M. (2013). HYDROPONIC Food Production. A Definitive Guidebook for the Advanced Home Gardener. In CRC Press. https://www.taylorfrancis.com/books/9781439878699
Saraswati, D. A., Sandrian, D. N., Nazulfah, I., Abida, N. T., Azmina, N., Indriyani, R., & Suryaningsih, S. (2022). Analisis Kegiatan P5 di SMA Negeri 4 Kota Tangerang sebagai Penerapan Pembelajaran Terdiferensiasi pada Kurikulum Merdeka. Jurnal Pendidikan Mipa, 12(2), 185–191. https://doi.org/10.37630/jpm.v12i2.578
Schlering, C., Zinkernagel, J., Dietrich, H., Frisch, M., & Schweiggert, R. (2020). Alterations in the chemical composition of spinach (Spinacia oleracea L.) as provoked by season and moderately limited water supply in open field cultivation. Horticulturae, 6(2). https://doi.org/10.3390/horticulturae6020025
Sharma, N., Acharya, S., Kumar, K., Singh, N., & Chaurasia, O. P. (2018). Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation, 17(4), 364. https://doi.org/10.5958/2455-7145.2018.00056.5
Shrestha, A., & Dunn, B. (2013). 114,633. January 2013.
Spencer, L., Senior, A., Scientist, H., Koss, L., & Technologist, A. E. (2021). How do You Harvest Microgreens in Microgravity??
Sunaryo, Y., Purnomo, D., Darini, M. T., & Cahyani, V. R. (2018). Effects of goat manure liquid fertilizer combined with AB-MIX on foliage vegetables growth in hydroponic. IOP Conference Series: Earth and Environmental Science, 129(1). https://doi.org/10.1088/1755-1315/129/1/012003
Toscano, S., Cavallaro, V., Ferrante, A., Romano, D., & Patané, C. (2021). Effects of different light spectra on final biomass production and nutritional quality of two microgreens. In Plants (Vol. 10, Issue 8). https://doi.org/10.3390/plants10081584
Weber, C. F. (2016). Nutrient Content of Cabbage and Lettuce Microgreens Grown on Vermicompost and Hydroponic Growing Pads. Journal of Horticulture, 03(04). https://doi.org/10.4172/2376-0354.1000190
Xiao, Z., Lester, G. E., Luo, Y., & Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. Journal of Agricultural and Food Chemistry, 60(31), 7644–7651. https://doi.org/10.1021/jf300459b
Xiao, Z., Lester, G. E., Park, E., Saftner, R. A., Luo, Y., & Wang, Q. (2015). Evaluation and correlation of sensory attributes and chemical compositions of emerging fresh produce: Microgreens. Postharvest Biology and Technology, 110, 140–148. https://doi.org/10.1016/j.postharvbio.2015.07.021
Xiao, Z., Rausch, S. R., Luo, Y., Sun, J., Yu, L., Wang, Q., Chen, P., Yu, L., & Stommel, J. R. (2019). Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. Lwt, 101, 731–737. https://doi.org/10.1016/j.lwt.2018.10.076
Zhang, Y., Xiao, Z., Ager, E., Kong, L., & Tan, L. (2021). Nutritional quality and health benefits of microgreens, a crop of modern agriculture. Journal of Future Foods, 1(1), 58–66. https://doi.org/10.1016/j.jfutfo.2021.07.001